Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Xue, Chaoyang (Ed.)Although lack of ADAR (adenosine deaminase acting on RNA) orthologs, genome-wide A-to-I editing occurs specifically during sexual reproduction in a number of filamentous ascomycetes, includingFusarium graminearumandNeurospora crassa. Unlike ADAR-mediated editing in animals, fungal A-to-I editing has a strong preference for hairpin loops and U at −1 position, which leads to frequent editing of UAG and UAA stop codons. Majority of RNA editing events in fungi are in the coding region and cause amino acid changes. Some of these editing events have been experimentally characterized for providing heterozygote and adaptive advantages inF.graminearum. Recent studies showed that FgTad2 and FgTad3, 2 ADAT (adenosine deaminase acting on tRNA) enzymes that normally catalyze the editing of A34 in the anticodon of tRNA during vegetative growth mediate A-to-I mRNA editing during sexual reproduction. Stage specificity of RNA editing is conferred by stage-specific expression of short transcript isoforms ofFgTAD2andFgTAD3as well as cofactors such asAME1andFIP5that facilitate the editing of mRNA in perithecia. Taken together, fungal A-to-I RNA editing during sexual reproduction is catalyzed by ADATs and it has the same sequence and structural preferences with editing of A34 in tRNA.more » « less
- 
            A-to-I RNA editing catalyzed by adenosine-deaminase-acting-on-RNA (ADARs) was assumed to be unique to metazoans because fungi and plants lack ADAR homologs. However, genome-wide messenger RNA (mRNA) editing was found to occur specifically during sexual reproduction in filamentous ascomycetes. Because systematic characterization of adenosine/cytosine deaminase genes has implicated the involvement ofTAD2andTAD3orthologs in A-to-I editing, in this study, we used genetic and biochemical approaches to characterize the role ofFgTAD2, an essential adenosine-deaminase-acting-on-tRNA (ADAT) gene, in mRNA editing inFusarium graminearum.FgTAD2had a sexual-stage-specific isoform and formed heterodimers with enzymatically inactiveFgTAD3. Using a repeat-induced point (RIP) mutation approach, we identified 17 mutations inFgTAD2that affected mRNA editing during sexual reproduction but had no effect on transfer RNA (tRNA) editing and vegetative growth. The functional importance of the H352Y and Q375*(nonsense) mutations in sexual reproduction and mRNA editing were confirmed by introducing specific point mutations into the endogenousFgTAD2allele in the wild type. An in vitro assay was developed to show that FgTad2-His proteins purified from perithecia, but not from vegetative hyphae, had mRNA editing activities. Moreover, the H352Y mutation affected the enzymatic activity of FgTad2 to edit mRNA but had no effect on its ADAT activity. We also identified proteins co-purified with FgTad2-His by mass spectrometry analysis and found that two of them have the RNA recognition motif. Taken together, genetic and biochemical data from this study demonstrated that FgTad2, an ADAT, catalyzes A-to-I mRNA editing with the stage-specific isoform and cofactors during sexual reproduction in fungi.more » « less
- 
            Abstract Like other eukaryotes, fungi use MAP kinase (MAPK) pathways to mediate cellular changes responding to external stimuli. In the past two decades, three well-conserved MAP kinase pathways have been characterized in various plant pathogenic fungi for regulating responses and adaptations to a variety of biotic and abiotic stresses encountered during plant infection or survival in nature. The invasive growth (IG) pathway is homologous to the yeast pheromone response and filamentation pathways. In plant pathogens, the IG pathway often is essential for pathogenesis by regulating infection-related morphogenesis, such as appressorium formation, penetration, and invasive growth. The cell wall integrity (CWI) pathway also is important for plant infection although the infection processes it regulates vary among fungal pathogens. Besides its universal function in cell wall integrity, it often plays a minor role in responses to oxidative and cell wall stresses. Both the IG and CWI pathways are involved in regulating known virulence factors as well as effector genes during plant infection and mediating defenses against mycoviruses, bacteria, and other fungi. In contrast, the high osmolarity growth (HOG) pathway is dispensable for virulence in some fungi although it is essential for plant infection in others. It regulates osmoregulation in hyphae and is dispensable for appressorium turgor generation. The HOG pathway also plays a major role for responding to oxidative, heat, and other environmental stresses and is overstimulated by phenylpyrrole fungicides. Moreover, these three MAPK pathways crosstalk and coordinately regulate responses to various biotic and abiotic stresses. The IG and CWI pathways, particularly the latter, also are involved in responding to abiotic stresses to various degrees in different fungal pathogens, and the HOG pathway also plays a role in interactions with other microbes or fungi. Furthermore, some infection processes or stress responses are co-regulated by MAPK pathways with cAMP or Ca 2+ /CaM signaling. Overall, functions of individual MAP kinase pathways in pathogenesis and stress responses have been well characterized in a number of fungal pathogens, showing the conserved genetic elements with diverged functions, likely by rewiring transcriptional regulatory networks. In the near future, applications of genomics and proteomics approaches will likely lead to better understanding of crosstalk among the MAPKs and with other signaling pathways as well as roles of MAPKs in defense against other microbes (biotic interactions).more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
